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1. INTRODUCTION 

Food quality is an important aspect of the food industry that has gained increased attention 

with the continuous development of living standards and the relative change of dietary structure. 

There is a rising and persistent increase in demand for nutritious and safe food owing to the recent 

surge in fraudulent activities in the food industry, especially for foods with high economical and 

global value such as wine, protein powders and meat. Chemical procedures (conventional 

methods) used for monitoring food quality include the Kjeldahl method (for crude protein), 

Soxhlet Extraction Method (for crude fat), pH meter (acidity/alkalinity), colorimeter (for color) 

(Pugliese and Sirtori, 2012). Some of these methods however, are tedious, destructive, time 

consuming and in some cases expensive and often do not give a complete overview of the food 

being investigated.  

Challenges such as these have led to the exploration of rapid alternatives such as near-

infrared spectroscopy (NIRS), which can provide information through vibrational bonding in the 

form of overtones and combination bands in the wavelength range 750-2500 nm. In spite of the 

low intensity, the band shape often defines a single compound or group of compounds, making 

this technique suitable for qualitative and quantitative purposes for food authentication. In 

addition, the emergence of handheld devices capable of remote analysis could also he explored for 

practical quality control purposes. Another rapid alternative for food quality control, is the 

electronic tongue (e-tongue). The International Union of Pure and Applied Chemistry (IUPAC) 

defines the electronic tongue as “a multisensory system consisting of a number of selective sensors 

and uses advanced mathematical procedures for signal processing based on pattern recognition 

and/or multivariate data analysis” (Vlasov et al., 2005). In comparison with the human tongue, e-

tongue has improvements in the sensitivity, selectivity, and multiplexing capacity of modern 

biosensors (Perumal and Hashim, 2014). It is capable of providing rapid, real-time, accurate and 

reliable data about various samples understudy and has gained fame in the pharmaceutical, 

cosmetics, environmental control, engineering (petroleum), agriculture, food beverage industries.  

Both e-tongue and NIRS require chemometrics and multivariate data analysis for results 

interpretation. Multivariate data analysis in food authenticity are simply, mathematical measures 

that can be employed to provide real-time and reliable statistical information about a production 

variation or deviation from quality, otherwise known as fingerprinting.  
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2. OBJECTIVES  

The aim of this thesis was to develop rapid techniques for the determination and prediction 

of foods with economical and global value using near infrared spectroscopy (NIRS) and electronic 

tongue (e-tongue). There were primarily two main objectives.  

The first main objective was to apply a benchtop spectrophotometer and handheld 

spectrophotometer to develop models that could discriminate, classify and predict: 

1. Different classes of Tokaji wine and also, to classify inferior Tokaji wines that were 

adulterated with grape must concentrate and sucrose at different sugar concentrations. 

2. Whey, beef and pea protein powders that were adulterated with four nitrogen-based 

adulterants: urea, glycine, taurine and melamine at very low concentrations.  

3. Whey, beef and pea protein powders that were adulterated with four nitrogen-based 

adulterants by emulating practical situations through scanning through a low-density 

polyethylene (LDPE) plastic bag using a handheld spectrophotometer. 

The second main objective was to apply a potentiometric e-tongue to: 

1. Develop models that could discriminate, classify and predict different classes of Tokaji 

wine and also, to classify inferior Tokaji wines that were adulterated with grape must 

concentrate and sucrose at different sugar concentrations. 

2. Determine the optimal dilution level of meat extract for e-tongue evaluation in the meat 

industry and also to develop three standardized sample preparation methods for meat 

analysis with the e-tongue, using red meat and poultry adulteration as case studies. 
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3. MATERIALS AND METHODS 

3.1. Determination of Tokaji Aszu and Tokaji Forditas wine adulteration 

Grape must concentrate (G.M.C) and four Tokaji wines of different quality grade (in 

increasing order of quality): Tokaji Forditas II, Tokaji Forditas I, Tokaji Aszu II and Tokaji Aszu I, 

were obtained from experts at the winemaking Tokaji region of Hungary. The wines were 

produced according to the standard requirements of Tokaji wine production as described: 

maceration of first class botrytized berries with base wine (fermented grape juice) to get Tokaji 

Aszu I wine and maceration of second class botrytized berries with base wine to get Tokaji Aszu 

II wine. Tokaji Forditas I and Tokaji Forditas II wines were prepared by reusing the botrytized 

berries from Tokaji Aszu I and Aszu II wine production for a second maceration with base wine, 

which is the normal practice in making Tokaji Forditas wines. The wines had a maceration period 

of 48 hours and resulted in diverse sugar concentrations that were determined by HPLC at the 

Department of Oenology, Szent Istvan University (now, Hungarian University of Agriculture and 

Life Sciences).  

Tokaji Forditas I and Forditas II wine wines were were manipulated with G.M.C of 

775.3 g/L sugar concentration to mimic the sugar concentrations of the authentic Tokaji wines. 

The adulteration was done in steps, resulting in four different adulteration levels (C1 -C4) each for 

Forditas I wine and Forditas II wine adulteration. The sugar concentration of the adulterated wines 

covered the range of sugar concentration generally existing in the authentic Tokaji wines. The 

purpose of this artificial adulteration was to monitor the possibility of producing wines of similar 

quality to the authentic Tokaji wines by sugar manipulation. Also included was a complex wine 

referred to as “Base_sugar” in this study. This wine contained sucrose during its refermentation 

and was not macerated with botrytized berries, but was refermented after the addition of sugar. It 

was meant to represent complex forms of adulteration. Three repeats of each sample were prepared 

using a 50% dilution factor as this was reported to be the recommended dilution level for wine 

analysis with the electronic tongue (Soós et al., 2015). 

3.2. Determination of optimal dilution and optimal extraction for meat analysis with the 

e-tongue 

Fresh poultry (turkey and chicken breast) and red meat (beef and pork thigh) were 

purchased from reputable supermarkets (SPAR) in Budapest, Hungary and transported to the 

laboratory for processing and analysis. One kilogram of each meat type was minced in the 

laboratory with a locally made mincer before commencing the experiments. 
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3.2.1. Determination of optimal dilution 

Minced turkey and chicken were artificially adulterated to four different concentration 

levels: 100% 97%, 95% and 90% w/w of turkey/chicken to have a total of 20 g per sample (meat 

mixture concentration). Each meat mixture was extracted by transferring the sample into a 200 mL 

volumetric flask and filled up to volume with distilled water then homogenized by vigorously 

shaking in the flask for 3 minutes. It was then filtered using a wire mesh filter (1mm pore size) to 

obtain the stock filtrate. This method was referred to as the “Raw meat extraction method”. From 

the stock filtrate of each of the prepared meat mixtures, 0.5%, 1% and 2% w/v dilutions were 

prepared by pipetting 5 mL, 10 mL and 20 mL respectively, into separate 100 mL volumetric 

flasks and homogenized by shaking the flask for 3 minutes before filling up to volume with 

distilled. transferring into 100 mL glass beakers for e-tongue analysis. 

3.2.2. Determination of optimal extraction method 

Three different extraction methods were tested for meat analysis with e-tongue: “raw meat 

extraction method”, “frozen meat extraction method” and “cooked meat extraction method”. Raw 

meat extraction method: 20 g of meat mixture was extracted as described in the experiment for the 

determination of optimal dilution to obtain the stock filtrates. Frozen meat extraction method: 20g 

of meat mixture was stored by freezing at a temperature -18 °C. The Frozen samples were removed 

on the second day of storage, put into a water bath of 50 °C for 20 minutes for them to thaw then, 

prepared in a similar way as the raw meat extraction method to obtain the stock filtrate. Cooked 

meat extraction method: 20 g of meat mixture was put in a cooking pot containing 200 mL distilled 

water at room temperature, covered with the lid and boiled for five minutes. It was afterwards, 

filtered with a wire mesh filter (1 mm) to obtain the stock filtrate. Six defined concentrations 

(100%, 99%,97%, 95%, 90% and 80% w/w) of poultry and red meat mixtures were used to 

evaluate all the three described sample preparation methods. The efficiency of the three developed 

mixtures was determined by their ability to discriminate the different meat mixtures after e-tongue 

analysis with diluted extracts prepared from the three methods. Three repeats were prepared for 

each meat mixture concentration level resulting in a total of 18 samples for poultry and red meat 

adulterated mixture respectively, for each of the three sample extraction methods. 

3.3. Determination of whey, beef and pea protein powder adulteration 

Whey protein powder, beef protein powder, pea protein powder, taurine, and glycine were 

provided by SCITEC Ltd. (Dunakeszi, Hungary). Urea and melamine were acquired from 

Elemental SRL (Bihor, Romania) and Sigma-Aldrich Corporation (United States) respectively. 

All three protein powders were artificially adulterated using urea (U), glycine (G), taurine (T) and 
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melamine (M) as adulterants. The nitrogen content (N) of the adulterants were: urea (46.62% N), 

glycine (18.65% N), taurine (11.19% N) and melamine (66.60% N). To have equal particle size, 

protein powders and adulterants were sieved through a wire mesh sieve with pore size (0.6 mm) 

before adulteration. A combination pattern was developed to contain single adulterant mixtures 

(U, G, T, M), dual mixtures (GT, UG, GM, UT, TM, UM) and multiple mixtures (UGT, GTM, 

UGM, UTM, UGTM). This resulted in a total 15 different mixture combinations. All the mixture 

combinations were prepared to have total adulterant concentrations of 0.5, 1, 1.5, 2, 2.5, and 3 % 

w/w in whey, beef and pea protein powders. The exact amount of protein powder used in each 

mixture was calculated based on the nitrogen content of the individual adulterants using melamine 

as the base adulterant because it had the highest nitrogen content of 66.6%. Triplicates of each 

mixture were prepared with each weighing 3 g (total mass after adulteration) and rigorously 

homogenized by shaking for 3 minutes. In total, there were 273 samples per protein type. Barcode 

system was used for easy labelling and identification during scanning with the instruments. 

3.4. Applied methods 

3.4.1. Near infrared spectroscopy (NIRS) 

The MetriNIR (MetriNIR Research, Development and Service Co., Budapest, Hungary) 

with a wavelength range of 750-1700 nm and a spectral stepping of 2 nm was used as the benchtop 

spectrophotometer. The NIR-S-G1 (InnoSpectra Co., Hsinchu, Taiwan) with a wavelength range 

of 900-1700 nm and a spectral stepping of 3-4 nm was used as the handheld spectrophotometer. 

For determination of Tokaji wine adulteration, three consecutive transflectance spectra 

were collected for each repeat sample using benchtop and handheld spectrophotometers with an 

optical glass cuvette. For determination of protein powder adulteration, three consecutive diffuse 

reflectance spectra of each sample repeat were collected using three setups: benchtop 

spectrophotometer with optical glass cuvette, handheld spectrophotometer with optical glass 

cuvette, and handheld spectrophotometer with low density polyethylene (LDPE) zip lock bags.  

Raw spectra inspection was performed to obtain the best wavelength selection range for the 

dataset from the Tokaj wine and protein powder experiments. Peaks and wavelengths that showed 

some correlations with the composition of the different analytes were also identified and discussed. 

Outlier detection was performed in principal component analysis (PCA) before applying 

preprocessing techniques. Different types of pretreatment and their different combinations were 

tested on the raw spectra for their ability to reduce baseline shifts, spectral noise, correct additive 

and/or multiplicative effects in spectral data and enhance spectral information.  
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3.4.2. Electronic tongue (e-tongue) 

The Alpha Astree potentiometric e-tongue with Ag/AgCl reference electrode and Chemical 

modified Field Effect Transistor (CHEMFET) sensors from AlphaM.O.S (Toulouse, France) 

equipped with food grade sensors was used to discriminate the different wine and meat mixtures 

based on pattern recognition. Conditioning and calibration were performed according to the 

manufacturer’s recommendation (Alpha Astree, 2010). E-tongue was used for the determination 

of Tokaji wine adulteration and the determination of optimal dilution and optimal extraction. 

During all e-tongue experiments, the tested sample volume was 100 mL, the sampling time was 

120 seconds, the sampling frequency was 1 second, and the cleaning time with distilled water was 

20 seconds. The last 10 seconds of the sensor signals, representing stabilized and optimal 

sensitivity of the different sensors were exported for statistical evaluations in R-project. Sensor 

signals were all pretreated with the additive correction relative to all samples (Kovacs et al., 2020). 

In addition to the additive correction relative to all samples, a sensor optimization process was 

performed for the dataset from the determination of optimal extraction.  

3.4.3. LDA multi-class classifications for determination of wine, meat and protein powder 

adulteration 

Linear discriminant analysis (LDA) models were developed to classify the different sample 

mixtures in the experiment for the determination of Tokaji wine adulteration, determination of 

optimal dilution, determination of optimal extraction and the determination protein powder 

adulteration. The reliability of all the developed LDA models was tested by splitting the data into 

two groups: the training set and validation set. The training set consisted of two-third of the data 

which included spectra (or sensor signals for datasets from the e-tongue) from the first and second 

replicate samples. The validation set consisted of spectra (or sensor signals for datasets from the 

e-tongue) from the third replicate samples. Cross-validation was done three times for each 

instrumental setup (three-fold cross-validation). The statistical parameters used to evaluate the 

performance of the LDA models were the recognition accuracy (%) and prediction accuracy (%). 

Recognition accuracy (%), represents the accuracy of calibration, whereas prediction accuracy 

(%), represents the accuracy of cross-validation (%).  

3.4.4. PLS regression models for determination of wine, meat and protein powder 

adulteration 

Partial least squares regression (PLSR) was used to predict sugar concentrations of 

authentic wines in the experiment for the determination of Tokaji wine adulteration. It was also 

used to predict turkey and beef concentrations in both the experiment for the determination of 
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optimal dilution and the determination of optimum dilution level. PLSR was also used to predict 

urea, glycine, taurine and melamine concentration in whey, beef and pea protein powder mixtures. 

It was also used to predict concentrations of pure protein powder in the mixtures. The predictive 

significance of all the PLS regression models described was tested with leave-one-sample out 

cross-validations: all three repeats of a sample and their consecutive spectra was each time, left of 

the validation process. The statistical parameters used to evaluate the performance of the PLS 

regression models were the root mean square error of calibration (RMSEC) and the coefficient of 

determination (R2C); in cross-validation (RMSECV, R2CV). The accuracies for the independent 

predictions were reported as determination coefficient of prediction (R2pred) and root mean square 

error of prediction (RMSEP). For all the models, the optimum number of latent variables was 

determined based on the minimum, RMSEC, RMSECV and RMSEP value to prevent over fitting 

of the models.  

3.4.5. Limit of detection, limit of quantification and limit of quantification for 

determination of protein powder adulteration 

For the protein powder mixtures, limit of detection minimum value (LODmin), limit of 

detection maximum value (LODmax), limit of quantification minimum value (LOQmin), limit of 

quantification maximum value (LOQmax), explained variance X (the actual dataset) and explained 

variance Y (the predicted dataset) were calculated through the partial least-squares (PLS) methods 

according to the International Union of Pure and Applied Chemistry (IUPAC) approach described 

by (Allegrini and Olivieri, 2014): 

𝐿𝑂𝐷𝑚𝑖𝑛 =  3.3 [𝑆𝐸𝑁 −  𝑣𝑎𝑟 (𝑥)  +  ℎ0𝑚𝑖𝑛 𝑆𝐸𝑁 −  𝑣𝑎𝑟 (𝑥)  +  ℎ0𝑚𝑖𝑛 𝑣𝑎𝑟 (𝑦𝑐𝑎𝑙)]1/2 

𝐿𝑂𝐷𝑚𝑎𝑥 =  3.3 [𝑆𝐸𝑁 −  𝑣𝑎𝑟 (𝑥)  +  ℎ0𝑚𝑎𝑥 𝑆𝐸𝑁 −  𝑣𝑎𝑟 (𝑥)  +  ℎ0𝑚𝑎𝑥 𝑣𝑎𝑟 (𝑦𝑐𝑎𝑙)]1/2 

Where, SEN is the sensitivity (inverse of the length of the regression coefficient), var (x) 

is the variance of the instrument signals. h0min/max is the minimum/maximum distance between 

a hyperplane for the calibration set, representing the scores of the samples for which the analyte 

of interest is absent and the center of a normalized calibration score space. Var (ycal) is the 

variance in the calibration concentrations. Lower and upper limits of the LODmin/max interval 

(LODmin and LODmax) correspond to the calibration samples with the lowest and largest 

extrapolated leverages to zero analyte concentration (Lukacs et al., 2018). LOQmin/max interval 

was obtained by multiplying the LODmin/max values with a factor value of three (Allegrini and 

Olivieri, 2014). LODmin/max and LOQmin/max values were used to further evaluate the 

performance of the models for detecting urea, glycine, taurine and melamine in protein powders 
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using all three setups: benchtop spectrophotometer with optical glass, handheld spectrophotometer 

with optical glass and handheld spectrophotometer with LDPE plastic bag.  
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4. RESULTS AND DISCUSSION 

4.1. Determination of Tokaj wine adulteration with NIRS 

Based on the location of the absorption peaks of the tested components and results of PCA, the 

wavelength ranges of 950–1650 nm was selected for the spectra optimization using benchtop. The 

spectra of handheld spectrophotometer were observed to be characterized by clipping between the 

wavelength range 1400-1500 nm, so the wavelength range 950-1400 nm was selected to eliminate 

the clipping before spectra optimization. Spectra from both benchtop and handheld 

spectrophotometer showed baseline offsets that was suspected to be due to the large distance from 

the unit’s light sources to the reflective/diffusive backing of the transflectance cell. Handheld 

spectrophotometer had the highest baseline offset. The observed baseline offsets suggested that 

they may require some form of spectra correction. Savitzky-Golay smoothing (21 points) followed 

by standard normal variate (SNV) showed the highest classification accuracy for both the benchtop 

and handheld Spectrophotometers so this was applied before developing detailed LDA and PLSR 

models for the determination of Tokaji wine adulteration. 

There were 100% cross-validation accuracies for all the different authentic wines using the 

benchtop spectrophotometer. Using the handheld spectrophotometer, all the authentic wines could 

be classified with 100% correct accuracy after cross-validation except the wine with the highest 

grade (Aszu I). Tokaji Aszu II and Forditas II could be classified with 80.18% and 89% cross-

validation accuracy. Benchtop spectrophotometer could predict the sugar concentration of the 

authentic wines with R2CV of 0.92 and RMSECV of 16.80 g/L. The handheld spectrophotometer 

could not predict the sugar content of the authentic wines with cross-validation although 

calibration models were possible. When PLSR models were developed for the benchtop 

spectrophotometer using a wavelength range of 950-1400 nm, lower accuracies were achieved 

with R2CV 0.45 and RMSECV 46.59 g/L. This suggests that the first overtone wavelength range 

of water (1300-1600 nm) maybe vital for tracking Tokaji wine adulteration with grape must 

concentrate as already reported in other liquids (Muncan, 2019) through the novel scientific 

discipline known as “aquaphotomics” (R. Tsenkova et al., 2018). 

Using the benchtop spectrophotometer, there was average recognition of 97.01% and 

average prediction of 96.78% for the classification of authentic and Forditas I wine that was 

adulterated with grape must concentrate and sucrose to mimic the sugar concentration of the 

authentic wines. Using the handheld spectrophotometer, there was average recognition of 72.40% 

and average prediction of 68.22% for the classification of authentic and Forditas I wine that was 

adulterated with grape must concentrate and sucrose to mimic the sugar concentration of the 
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authentic wines. With cross validation, Aszu I, Aszu II, Forditas I and Forditas II could be 

classified 70.18%, 77.93%, 89% and 66.67% accuracy respectively.  

Using the benchtop spectrophotometer, there was average recognition of 98.76% and 

average prediction of 98.78% for the classification of authentic and Forditas II wine that was 

adulterated with grape must concentrate and sucrose to mimic the sugar concentration of the 

authentic wines. Using the handheld spectrophotometer, there was average recognition of 81.87% 

and average prediction of 76.06% for the classification of authentic and Forditas II wine that was 

adulterated with grape must concentrate and sucrose to mimic the sugar concentration of the 

authentic wines. With cross validation, Aszu I, Aszu II, Forditas I and Forditas II could be 

classified 80.18%, 89%, 100% and 44.48% accuracy respectively.  

The results from this study signal a potential for using near infrared spectroscopy to track 

Tokaji wine adulteration.  

4.2. Determination of Tokaj wine adulteration with e-tongue 

There was 100% cross-validation accuracy for classifying all the different authentic wines 

using the e-tongue. There was average recognition accuracy of 99.54% and prediction accuracy of 

98.17% when authentic wines and Forditas I adulterated wines were classified. With cross 

validation, all the authentic wines could be classified with 100% accuracy. There was average 

recognition of 100% and prediction of 93.17% when authentic wines and Forditas II adulterated 

wines were classified. There was 53.81% misclassification of authentic Forditas II wine as base 

sugarwine and 7.62% misclassification of base sugar wine as authentic Forditas II wine rate of 

53.81% with cross-validation. Hirtherto this study, there was no report about using the e-tongue 

to detect adulteration of wines with grape must concentrate. The demonstrated classification 

capabilities of the e-tongue could be taken advantage of by the wine industries for reliable quality 

monitoring of botrytized wines. Additive correction relative to all samples improved the 

classification results of the e-tongue datasets and can be adopted for samples measurements 

performed with the same sample set and sequence. Sugar concentration of the wines could be 

predicted with R2CV of 0.90 and RMSECV of 17.67 g/L of wine using 7 latent variables.  

4.3. Comparison of NIRS and e-tongue for determination of Tokaji wine adulteration 

Comparatively, the e-tongue could classify Forditas I wines better than the benchtop 

spectrophotometer but the benchtop spectrophotometer could classify Forditas II wines better. 

This suggests that the benchtop spectrophotometer was more sensitive to higher sugar 

concentrations than the e-tongue as Forditas II adulterated wines contained more grape must 

concentrate because they were the lowest grade wines. 
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4.4. Determination of meat optimal dilution and optimal extraction for e-tongue analysis 

There was average recognition and prediction accuracy of 100% respectively for the 

classification of adulterated meat samples using all three different dilutions. There was therefore 

a need to apply some other multivariate tools to ascertain the optimum dilution level. PLS 

regression was used for this. The different meat mixtures could be predicted with R2CV in the 

range 0.65-0.95 and RMSECV generally, less than 2.14% w/v of turkey using all three dilutions. 

Dilution level 2 with 1% w/v was proven to be the optimum dilution level the highest R2CV of 

0.95 and the lowest RMSECV of 0.80% w/v among all the three tested dilution methods. It was 

used for subsequent experiments for the determination of optimal extraction method. 

Using the raw meat extraction method to classify turkey/chicken mixtures there was 

average recognition accuracy of 81.28% and prediction accuracy of 58.35%. Using the raw meat 

extraction method to classify beef/pork mixtures, there was average recognition accuracy of 

67.73% and prediction accuracy of 54.25%. Misclassification rates associated with the low 

concentrations of both turkey/chicken and beef/pork meat mixtures after raw meat extraction 

suggested that perhaps, the meat compounds extracted were not sufficient for detection and 

discrimination with the e-tongue. Extracting meat compounds with water may be a challenge 

especially with the presence of fat-soluble compounds, which is often processed with other 

methods such as the Soxhlet method, Bligh and Dyer method, Folch method, microwave solvent 

extraction etc (Hewavitharana et al., 2020). This is particularly true as the samples with the highest 

concentrations: T080 and B080 always gave the best classification accuracies whereas, those with 

the lowest concentration T099 and B099 consistently gave the worst. Extraction of meat 

compounds often involve using denaturing or non-denaturing solutions, which can be expensive 

(Malva et al., 2018). Better accuracies of 100% were however achieved with this extraction for 

determination of optimal dilution. This could be due to the differences in the range of the mixture 

concentrations. 

Using the frozen meat extraction method to classify turkey/chicken mixtures, there was 

average recognition of 80.52% and prediction accuracy of 62.55%. Using the frozen meat 

extraction method to classify beef/pork mixtures, there was average recognition accuracy of 

85.51% and prediction accuracy of 56.41%. Misclassifications observed with the frozen meat 

extraction method suggest that, the meat compounds extracted may also, not have been sufficient 

for detection and discrimination by the e-tongue sensors. The quality of frozen/thawed meat is 

affected by the amount of frozen and unfrozen water, freezing rate and the temperature and time 

of frozen storage (Daszkiewicz, Kubiak and Panfil, 2018). The characteristics of unfrozen water 

influences the rate and extent of physical, chemical, and biochemical processes in meat (Leygonie, 
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Britz and Hoffman, 2012) which, may have influenced drip and the concentrations of compounds 

necessary for the detection and discrimination with the e-tongue sensors. 

Using the cooked meat extraction method to classify turkey/chicken mixtures, there was 

average recognition accuracy of 78.13% and prediction accuracy of 64.73%. Using the cooked 

meat extraction method to classify beef/pork mixtures, there was average recognition accuracy of 

89.62% and prediction accuracy of 68.77%. Besides time consumption, elevated temperatures 

have been widely acknowledged to be effective in the extraction of bioactive compounds in diverse 

foods (Putnik et al., 2018; Khan, Aslam and Makroo, 2019). Meat extraction by cooking was also 

reported to be effective in the extraction of compounds from chicken bone (Kumoro et al., 2010) 

and also, for the detection beef adulteration with illegal hormonal substances (Goga, Ferraro and 

Barbera, 2011).  

4.5. Comparison of three extraction methods for detecting turkey/chicken and beef/pork 

mixtures with e-tongue  

Comparatively, all the three extraction methods yielded similar recognition accuracies but 

the cooked meat extraction yielded the best cross-validation accuracies for classifying 

turkey/chicken mixtures. Better accuracies were achieved for the red meat adulteration compared 

to the poultry adulteration. Additive correction relative to all samples also improved the 

classification results of all the datasets. The best PLS model for the prediction of chicken in turkey 

was achieved when the frozen meat extraction with distilled water method was used but was the 

meat extraction by cooking method for pork in beef. Generally, sensors HA, BB, ZZ, GA and JB 

provided the best accuracies using LDA simulations. It was sensors HA, BB, ZZ and GA for PLSR 

simulations.  

4.6. Determination of protein powder adulteration with NIRS 

Based on the location of the absorption peaks of the tested components and results of PCA, 

the wavelength range 950–1650 nm was selected and used for the spectra optimization. This was 

done for spectra from all three setups: benchtop spectrophotometer and optical glass, handheld 

spectrophotometer and optical glass and spectrophotometer and LDPE plastic. The chemical 

structures of the adulterants themselves could be related to some of these important absorption 

bands in the absorption plot to give a hint about adulterant presence, their mixture combinations 

or concentrations in the three protein powder mixtures.   

The handheld spectrophotometer scanned through the optical glass had the highest base 

line shift in raw spectra analysis. The reason for this could be that, the optical glass surface could 

not fit properly to the window of the handheld spectrophotometer because of its structural design. 
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This may have resulted in a small air gap between the two surfaces that further influenced the 

optical path of the light that reaches the detector during analysis. Applying Savitzky-Golay 

smoothing (21 points) before MSC was the most effective pretreatment for predicting melamine 

in the protein powder mixtures using PLSR. This was deemed as the optimum pretreatment for 

PLSR analysis using benchtop spectrophotometer and optical glass. Applying the Savitzky-Golay 

smoothing (21 points) before SNV gave the highest classification accuracies for classifying all the 

different mixture combinations, pure whey, beef and pea protein powder. This was deemed as the 

optimum pretreatment for LDA analysis using benchtop spectrophotometer and optical glass. 

Applying Savitzky-Golay smoothing (21 points) before SNV was the most effective pretreatment 

for predicting melamine in the protein powder mixtures using PLSR, when the handheld 

spectrophotometer was used with both optical glass and LDPE.  

For the classification of pure and adulterated protein powders with based on their mixture 

combinations, there was average recognition accuracy of 74.01% and prediction accuracy of 

74.09% using the benchtop spectrophotometer. Using the handheld spectrophotometer with optical 

glass yielded average recognition accuracies of 58.99% and prediction of 56.46%. Using the 

handheld spectrophotometer with LDPE plastic yielded average recognition accuracies of 62.17% 

and prediction of 54.48%.  

For the classification of pure and adulterated protein powder mixtures at the lowest 

adulterant concentration of 0.5% w/w, using handheld spectrophotometer and optical glass yielded 

average recognition of 65.13% and average prediction of 53.49%. Pure whey, beef and pea protein 

powders could be classified with 66.89%, 100%, 89% accuracies respectively. Using the handheld 

spectrometer with handheld spectrophotometer with LDPE plastic bag yielded average recognition 

83.79% and average prediction 56.19% achieved using handheld spectrophotometer with LDPE 

plastic bag. Pure whey, beef and pea protein powders could be classified with 66.89%, 66.89%, 

89% accuracies respectively. Using the benchtop spectrophotometer, there was 99.47% average 

recognition and 98.75% average prediction for classifying all the protein powders at the lowest 

adulterant concentration of 0.5% w/w using benchtop spectrophotometer. There was no 

misclassification between pure protein powders and all mixture combinations with cross-

validation. Benchtop spectrophotometer gave the best accuracies for classifying urea, glycine, 

taurine, melamine and their different mixture combinations at the lowest concentration of 0.5% 

w/w in whey, beef and pea protein powder. Using the handheld spectrophotometer with LPDE 

plastic bag gave better average accuracies than using the handheld spectrophotometer with optical 

glass. These models were developed to assume situations where producers may use very low 

concentrations because practically, tracking adulteration involves determining whether 
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adulteration has occurred or not and not necessary the percentage of its existence. Thus, 0.5% w/w 

being the lowest adulterant concentration tested in this study, it’s detection regardless of the 

protein type would be more practical and be of much significance.  

For classification of urea, glycine, taurine and melamine in protein powder using only 

mixtures with single adulterants, using the handheld spectrophotometer with optical glass yielded 

average 91.72% recognition and 90.43% prediction for classification of single adulterants in whey 

protein powder. Using the handheld spectrophotometer with LDPE plastic bag yielded an average 

recognition accuracy of 93.35% and 90.03% prediction were achieved when the LDPE plastic bag 

was used. For beef protein powder mixtures, there was an average classification accuracy of 

95.66% recognition and 94.80% prediction accuracy when handheld spectrophotometer was used 

with optical glass. Average recognition and prediction accuracy were 95.82% and 91.99% 

respectively when handheld spectrophotometer and LDPE plastic bag was used. With or without 

cross-validation, pure beef protein powders could be classified with 100% correct accuracy when 

they were scanned through either optical glass or LDPE plastic bag. For pea protein powder 

mixtures, average 94.65% recognition and 93.71% prediction accuracy were achieved when 

handheld spectrophotometer was used with optical glass. Using handheld spectrophotometer and 

LDPE plastic bag, accuracies of 93.55% (recognition) and 94.02% (prediction) were achieved. 

The best accuracies for classifying urea, glycine, taurine and melamine in protein powder mixtures 

with single adulterants were achieved with the benchtop spectrophotometer for all the three protein 

powders. There was average 98.71% recognition and 96.28% prediction for whey protein powder, 

100% recognition and 99.62% prediction for beef protein powder and 98.89% recognition and 

98.88% prediction for pea. with cross-validation, pure beef and pea protein powder could be 

predicted with 100% correct accuracy but 11% of samples containing melamine were misclassified 

as pure whey protein powder.  

4.7. PLSR prediction of urea, glycine, taurine and melamine concentrations in protein 

powder mixtures 

All the models could predict the adulterants with R2CV in the range 0.74-0.93 and 

RMSECV in the range 0.21- 1.57% w/w of adulterated protein powders. The models developed 

with the dataset from scanning through the LDPE plastic bag was generally weaker compared to 

those developed with the dataset from scanning through optical glass with the handheld 

spectrophotometer. Urea could be predicted with the highest accuracies for all three setups: 

benchtop spectrophotometer with optical glass, handheld spectrophotometer with optical glass and 

handheld spectrophotometer with LDPE plastic. RMSECV was generally lowest for the prediction 

of melamine in the protein powder mixtures. Glycine yielded the highest RMSECV. The best 
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model for predicting urea, glycine, taurine and melamine in protein powders regardless of their 

adulterant concentration of mixture combination, was as R2CV of 0.93 and RMSECV of 0.21% 

w/w using the benchtop spectrophotometer.  

4.8. PLSR prediction of urea, glycine, taurine and melamine concentrations in protein 

powder mixtures from analysis with independent data 

All the models could predict the adulterants with R2pred in the range 0.72-0.94 and RMSEP 

in the range 0.18- 1.59% w/w of adulterated protein powders. Urea could be predicted with the 

highest accuracies for all three cases: with benchtop spectrophotometer, handheld 

spectrophotometer with optical glass and handheld spectrophotometer with LDPE plastic bag, the 

best was as R2pred of 0.94 and RMSECV of 0.18% w/w using the benchtop spectrophotometer.  

4.9. PLSR prediction of protein powder concentrations in protein powder mixtures from 

analysis with independent data 

For prediction of protein powder concentration in all mixtures, using the handheld 

spectrophotometer with optical glass gave R2CV 0.84, RMSECV 1.38% w/w, R2pred 0.84 and 

RMSEP 1.38% w/w. Using the handheld spectrophotometer with optical LDPE plastic gave R2CV 

0.86, RMSECV 1.39% w/w, R2pred 0.84 and RMSEP 1.47% w/w. Based on the R2CV and 

RMSECV values using the LDPE plastic bag gave the best results for predicting protein powder 

in the samples when the handheld spectrophotometer was used, compared to using the handheld 

spectrophotometer with optical glass. They both however, had similar R2pred and RMSEP values. 

Using the benchtop spectrophotometer gave the best model for predicting protein powder 

concentrations in all the samples with R2CV 0.86, RMSECV 1.36% w/w, R2pred 0.87 and RMSEP 

1.30% w/w. For prediction of protein powder concentrations in protein powder mixtures that 

contained single mixtures of urea, glycine, taurine and melamine at concentrations of 0.5% w/w – 

3% w/w, using the handheld spectrophotometer with optical glass gave R2CV 0.84, RMSECV 

1.18% w/w, R2pred 0.88 and RMSEP 1.58% w/w. Using the handheld spectrophotometer with 

optical LDPE plastic gave R2CV 0.91, RMSECV 1.36% w/w, R2pred 0.92 and RMSEP 1.33% 

w/w. Based on the R2CV, RMSECV, R2pred and RMSEP values, using the handheld 

spectrophotometer with LDPE plastic bag gave the best results compared to using the handheld 

spectrophotometer with optical glass for predicting protein powder concentrations in protein 

powder mixtures that contained single mixtures of urea, glycine, taurine and melamine at 

concentrations of 0.5– 3% w/w. Using the benchtop spectrophotometer gave the best model for 

predicting protein powder concentrations in protein powder mixtures that contained single 

mixtures of urea, glycine, taurine and melamine at concentrations of 0.5% – 3% w/w. There was 

R2CV 0.90, RMSECV 1.41% w/w, R2pred 0.93 and RMSEP 1.22% w/w. 
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4.10. LODmin, LODmax, LOQmin and LOQmax for the determination of urea, glycine, 

taurine and melamine in protein powder 

Handheld spectrophotometer with optical glass had LODmin in the range 0.18 -0.53% w/w. 

Only taurine had LODmin higher than the minimum adulterant concentration of 0.5% w/w used 

in this study. LODmax was in the range 0.61-3.10% w/w. Only taurine had LODmax higher than 

the maximum adulterant concentration of 3% w/w used in this study. Handheld spectrophotometer 

with LDPE plastic had LODmin in the range 0.16% -0.85% w/w. Only taurine and glycine had 

LODmin higher than the minimum adulterant concentration of 0.5% w/w used in this study. 

Benchtop spectrophotometer gave the lowest LODmin/max values for the determination of urea, 

glycine, taurine and melamine in the protein powder mixtures.  

The findings from the determination of protein powder adulteration are particularly 

important because hitherto this studies, adulterant concentrations in literature ranged between 1- 

5% w/w and no scanning was done through plastic bag. In addition, classification of the complex 

adulterant mixture combinations reported in this study signals the potential of the 

spectrophotometers in detecting complex forms of protein powder adulteration. The findings in 

from this study provides grounds for detecting novel forms of adulteration in whey, beef and pea 

protein powder. Compared to traditional methodology such as the Dumas method where, a test run 

by takes from 5 to 10 min depending on sample weighing and combustion, a single scan with 

NIRS takes less than 1 min. In terms of expenses, the average cost of the Dumas method is about 

$25 per sample, whereas the NIR test method can be <$5.00 per sample) (Ingle et al., 2016). The 

discriminatory and classification accuracies achieved with the benchtop and handheld 

spectrophotometers proves their potential for detecting urea, glycine, taurine and melamine 

concentrations as low as 0.5% w/w in protein powders and provides advantages from both time 

and cost perspective. The handheld spectrophotometer provides an extra advantage of expeditious 

onsite detection of adulterants.  
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5. CONCLUSION AND RECOMMENDATION 

Authentic Tokaji Tokaji Forditas II, Forditas I Aszu II and Aszu I wines could be classified 

with 100% accuracy using the benchtop spectrophotometer at a wavelength range of 950-1650 

nm. Handheld spectrophotometer could only classify authentic Tokaji Forditas I, Forditas II and 

Aszu II with 100% accuracy using the wavelength 950-1400 nm. The authentic wines were 

predicted using PLSR, with R2CV of 0.92 and an RMSECV of 16.80 g/L of wine using the 

benchtop spectrophotometer at wavelength 950-1650 nm. Handheld spectrophotometer produced 

unsatisfactory results for predicting sugar concentrations of the wines.  E-tongue could classify all 

authentic wines with 100% correct accuracy and predict them with R2CV of 0.90 and an RMSECV 

of 17.67 g/L. Benchtop spectrophotometer could classify adulterated Forditas I and Forditas II 

wine mixtures with average cross-validation accuracies of 96.78% and 98.78% respectively. 

Handheld spectrophotometer could classify adulterated Forditas I and Forditas II wine mixtures 

with average cross-validation accuracies of 68.22% and 76.06% respectively. Adulterated Forditas 

I and Forditas II wine mixtures could be classified with average cross-validation accuracies of 

98.17% and 93.10% using the e-tongue. The results in this study signal a potential for using 

electronic-tongue and near infrared spectroscopy to track Tokaji wine adulteration. For practically 

on industrial basis, further may be required with higher sample numbers for more robust models. 

The setup of the handheld spectrophotometer used in this study should also be carefully considered 

and adapted to better experimental procedures if it is to be used to track Tokaji wine adulteration.  

Among the three tested dilution factors for the determination of optimum dilution for e-

tongue analysis, 1% w/v dilution found to produce the best LDA results of 100% accuracy for 

classifying concentrations of turkey/chicken mixtures. With this dilution level, there was R2CV of 

0.95 and RMSECV of 0.80%w/v in PLSR. Using this dilution level for the three tested meat 

extraction methods, the cooked meat extraction method produced the best results for classifying 

turkey/chicken mixtures and beef/pork mixtures. There was average recognition of 78.13% and 

average prediction 64.72% for classifying turkey/chicken mixtures and average recognition of 

89.62% and average prediction 68.77% for classifying beef/pork mixtures. Using this method, 

there was R2CV of 0.72 and RMSECV of 3.83%w/v in PLSR. The determined optimal dilution 

and extraction method can be explored for rapid meat quality control checks with the electronic 

tongue; however, the study is recommended to be extended with alternative set of meat mixtures, 

wide range of mixture concentrations to ascertain the reliability of the methods for all meat types. 

This may also help understand why the cooked meat extraction method worked better for PLSR 

prediction of beef mixtures compared to the poultry mixtures.  
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Benchtop spectrophotometer gave the best accuracies for classifying single, dual, triple and 

quadruple mixtures of urea, glycine, taurine and melamine and that lowest concentration of 0.5% 

w/w. Using the handheld spectrophotometer with LPDE plastic bag gave better accuracies than 

using the handheld spectrophotometer with optical glass. Using the benchtop spectrophotometer 

gave the best model for predicting protein powder concentrations in all the samples with R2CV 

0.86, RMSECV 1.36% w/w, R2pred 0.87 and RMSEP 1.30% w/w. Using the LDPE plastic bag 

gave better results for predicting protein powder in the samples compared to using the handheld 

spectrophotometer with optical glass. They both however, had similar R2pred and RMSEP values. 

Using the benchtop spectrophotometer gave the best model for predicting protein powder 

concentrations in protein powder mixtures that contained only single adulterants of urea, glycine, 

taurine and melamine at concentrations of 0.5– 3% w/w. There was R2CV 0.90, RMSECV 1.41% 

w/w, R2pred 0.93 and RMSEP 1.22% w/w. Using the LDPE plastic bag gave the results compared 

to using the handheld spectrophotometer with optical glass for predicting protein powder 

concentrations in protein powder mixtures that contained single mixtures of urea, glycine, taurine 

and melamine at concentrations of 0.5– 3% w/w. 

Benchtop spectrophotometer yielded the lowest limit of detections (LOD’s) and limit 

of quantifications (LOQ’s) for quantifying urea, glycine, taurine and melamine in whey, beef and 

beef protein powder compared to when the handheld spectrophotometer was used. Comparatively, 

using the handheld spectrophotometer and optical glass yielded lower LODmin/max and 

LOQmin/max for some of the adulterants than when the handheld spectrophotometer was used 

with optical glass was used but samples scanned through the LDPE plastic bag, had a better 

repeatability when average LOD and LOQ’s were evaluated. Urea and melamine had the lowest 

LOD and LOQ irrespective of the instrument or scanning method. Taurine always had the highest 

LOD and LOQ irrespective of the instrument or scanning method. For future studies regarding 

protein powder adulteration, it is recommended to examine practically worthy levels of protein 

powder adulteration so that specific models may be developed for them with well-defined target 

accuracies. Assessing the optical of the handheld spectrometer and experimental setup of any 

spectrophotometer that will be used is very much recommended before starting experiments to 

obtain reliable experimental datasets. 
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6. NEW SCIENTIFIC RESULTS 

For purposes of these new scientific findings, benchtop spectrophotometer refers to the 

MetriNIR (MetriNIR, Research Development and Service Co., Budapest, Hungary) whereas, 

handheld spectrophotometer refers to the NIR-S-G1 (InnoSpectra Co., Hsinchu, Taiwan). E-

tongue refers to the Alpha Astree potentiometric electronic tongue (AlphaM.O.S, Toulouse, 

France) equipped with seven sensors developed for food application (BB, HA, ZZ, GA CA, JE, 

JB), a reference electrode and a 16 position auto sampler. 

1.  Authentic Tokaji Forditas II, Forditas I, Aszu II and Aszu I wines were scanned in 

transflectance mode with benchtop spectrophotometer (950-1650 nm) and handheld 

spectrophotometer (950-1400 nm) using a glass cuvette with layer thickness 0.4 mm. E-

tongue was also used to analyze the wines after 50% v/v aqua dilution. Classification models 

with linear discriminant analysis (LDA) and prediction models with partial least squares 

regression (PLSR) were developed using data from all the instruments.  

- Benchtop spectrophotometer could classify all the authentic wines with 100% accuracy. 

Sugar content of authentic wines was predicted with R2CV of 0.92 and RMSECV of 16.80 

g/L of wine.  

- Handheld spectrophotometer could classify the authentic wines with average cross-

validation accuracy of 94.48% with Forditas I (11.04%) and Aszu II (11.04%) being 

misclassified as Aszu I. Model developed to predict sugar content of authentic wines with 

the current setup of handheld spectrophotometer was unsatisfactory. 

-  E-tongue could classify all authentic wines with 100% correct accuracy and predict the 

sugar content of authentic wines with R2CV of 0.90 and RMSECV of 17.67 g/L of wine. 

2. Authentic Tokaji wines (Forditas II, Forditas I, Aszu II, Aszu I), adulterated Forditas I and 

Forditas II wines (add must concentrate to mimic authentic wine sugar concentration) and 

wine with added sucrose before refermentation were analyzed with spectrophotometers and 

e-tongue (after 50% v/v aqua dilution). The samples were scanned in transflectance mode with 

benchtop spectrophotometer (950-1650 nm) and handheld spectrophotometer (950-1400 nm) 

using a glass cuvette with layer thickness 0.4 mm. Classification models with linear 

discriminant analysis (LDA) and prediction models with partial least squares regression 

(PLSR) were developed using data from all the instruments.  

- Benchtop spectrophotometer could classify the different Forditas I and Forditas II wine 

mixtures with average cross-validation accuracies of 96.78% and 98.78%, respectively. 

There was no misclassification between authentic and adulterated wines.  
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- Handheld spectrophotometer could classify adulterated Forditas I and Forditas II wine 

mixtures with average cross-validation accuracy of 68.22% and 76.06%, respectively. 

There were misclassifications between authentic and adulterated wines in both Forditas I 

and Forditas II wine mixtures.  

- E-tongue could classify adulterated Forditas I and Forditas II wine mixtures with average 

cross-validation accuracies of 98.17% and 93.10%. There was no misclassification 

between authentic and adulterated wines in Forditas I wine mixtures. The wine containing 

sucrose before refermentation was the only adulterated wine misclassified (53.81%) as 

an authentic Tokaji wine (Forditas II wine). 

3. Raw meat extracts from 100%, 97%, 95%, 90% w/w turkey/chicken mixtures were obtained 

using aqua dilution levels of 0.5%, 1% and 2% w/v and analyzed using e-tongue. 

Classification models with linear discriminant analysis (LDA) and prediction models with 

partial least squares regression (PLSR) were developed using data from e-tongue. 

- E-tongue could classify turkey/chicken mixtures after 0.5%, 1% and 2% w/v dilution and 

predict turkey concentration with R2CV 0.65, 0.95, 0.81 and RMSECV 2.14% w/w, 

0.80% w/w 1.57% w/w for the respective dilution levels. Dilution level (1% w/v) was the 

optimum among the three tested dilution levels for e-tongue analysis. 

4. Raw meat extracts from 100%, 99%, 97%, 95%, 90% and 80% w/w poultry (turkey/chicken) 

and 100%, 99%, 97%, 95%, 90% and 80% w/w red meat (beef/pork) were obtained using raw 

meat/frozen meat/cooked extraction method and diluted to 1% w/v. Classification models 

with linear discriminant analysis (LDA) and prediction models with partial least squares 

regression (PLSR) were developed using data from e-tongue. 

- E-tongue could classify poultry mixtures with cross-validation of 58.35%, 62.55%, 

64.72% for raw meat, frozen meat, cooked meat extraction methods respectively, and 

predict them with R2CV 0.76, 0.81, 0.47 and RMSECV 3.34% w/w, 2.89% w/w and 

4.93% w/w respectively. 

- E-tongue could classify red meat mixtures with cross-validation of 54.25%, 56.41%, 

68.77% for raw meat, frozen meat, cooked meat extraction methods respectively, and 

predict them with R2CV 0.76, 0.81, 0.47 and RMSECV of 3.34% w/w, 2.89% w/w and 

4.93% w/w, respectively.  
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Whey, beef and pea protein powders were adulterated with urea, glycine, taurine and 

melamine at a total of 0.5%, 1%, 1.5%, 2%, 2.5% and 3% w/w adulteration using either single, 

dual, triple or quadruple mixture combinations (16 mixtures). The mixtures were scanned in 

diffuse reflectance mode using three setups: benchtop spectrophotometer with optical glass, 

handheld spectrophotometer with optical glass and handheld spectrophotometer with low density 

polyethylene (LDPE) plastic bag. Wavelength range for all three setups was 950-1650 nm.  

5. When only protein powder mixtures containing single adulterants were analyzed using linear 

discriminant analysis and predictions with independent data was performed using partial 

least squares regression: 

- All three setups could classify pure beef protein powder with 100% cross-validation 

accuracy.  

- Benchtop spectrophotometer with optical glass could classify pure whey protein 

powder with 89% cross-validation accuracy and 11% misclassification as protein powder 

samples containing melamine. Protein powder concentration in the mixtures could be 

predicted with R2CV 0.86, RMSECV 1.36% w/w, R2pred 0.87 and RMSEP 1.30% w/w 

respectively. 

- Handheld spectrophotometer with optical glass could classify pure whey and pure pea 

protein powder with 89% cross-validation accuracy each and 11% misclassification each 

as protein powder samples containing melamine. Protein powder concentration in the 

mixtures could be predicted with R2CV 0.84, RMSECV 1.38% w/w, R2pred 0.84 and 

RMSEP 1.38% w/w respectively. 

- Handheld spectrophotometer with LDPE plastic bag could classify pure whey and 

pure pea protein powder with 89% cross-validation accuracy each and 11% 

misclassification each as protein powder samples containing glycine. Protein powder 

concentration in the mixtures could be predicted with R2CV 0.86, RMSECV 1.39% w/w, 

R2pred 0.84 and RMSEP 1.47% w/w respectively. 

6. When only samples containing the lowest adulterant concentration of 0.5% w/w were 

analyzed using linear discriminant analysis:  

- Benchtop spectrophotometer with optical glass could classify all the different mixture 

combinations with average cross-validation accuracy of 98.75%. There was no 

misclassification between pure protein powders and all mixture combinations. 

- Handheld spectrophotometer with optical glass could classify all the different mixture 

combinations with average cross-validation accuracy of 53.49%. Pure whey, beef and pea 

protein powders could be classified with 66.89%, 100%, 89% accuracies respectively. 
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There was 33.11% and 11% misclassification of pure whey and pea protein powder 

respectively as adulterated protein powder samples.  

- Handheld spectrophotometer with LDPE plastic bag could classify all the different 

mixture combinations with average cross-validation accuracy of 56.19%. Pure whey, beef 

and pea protein powders could be classified with 66.89%, 66.89%, 89% accuracies 

respectively and misclassifications of 11.04%, 22.08% and 11% respectively as 

adulterated protein powder samples. Pure whey and pea protein powders showed 

misclassifications (11.04%) amongst themselves.  

7. When all mixtures were analyzed using partial least squares regression with leave-one-

sample-out cross-validation: 

- Benchtop spectrophotometer with optical glass could predict urea, glycine, taurine and 

melamine concentrations with R2CV 0.93, 0.87, 0.93, 0.93 and RMSECV 0.21, 0.97, 

0.94, 0.16% w/w respectively.  

- Handheld spectrophotometer with optical glass could predict urea, glycine, taurine and 

melamine concentrations with R2CV 0.89, 0.79, 0.86, 0.82 and RMSECV 0.27, 0.91, 

1.30, 0.23% w/w respectively. 

- Handheld spectrophotometer with LDPE plastic bag could predict urea, glycine, 

taurine and melamine concentrations with R2CV 0.91, 0.74, 0.79, 0.75 and RMSECV 

0.25, 1.09, 1.57, 0.29% w/w respectively.  

- All three setups could predict urea with the highest accuracy.  

8. When limit of detection was calculated for urea, glycine, taurine and melamine in all the 

mixtures: 

- Benchtop spectrophotometer with optical glass produced the lowest average limit of 

detections (LOD’s) 0.18%, 0.50%, 0.76% and 0.13% for urea, glycine, taurine and 

melamine respectively. Urea and melamine had average LOD’s below the minimum 

tested adulterant concentration of 0.5% w/w.  

- Handheld spectrophotometer with optical glass produced average limit of detections 

(LOD’s) of 0.52%, 1.35, 1.81% and 0.40% for urea, glycine, taurine and melamine 

respectively. Melamine had average LOD below the minimum tested adulterant 

concentration of 0.5% w/w.  

- Handheld spectrophotometer with LDPE plastic bag produced average limit of 

detections (LOD’s) of 0.27%, 1.02%, 1.42% and 0.24% for urea, glycine, taurine and 

melamine respectively. Urea and melamine had LOD’s below the minimum tested 

adulterant concentration of 0.5% w/w.  



23 

 

- All three setups produced LOD’s in urea, taurine, glycine and melamine that were below 

the maximum tested adulterant concentration of 3% w/w. Taurine always had the highest 

LOD.  
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